viernes, 23 de marzo de 2012

TRANSISTORES DE POTENCIA

EL TRANSISTOR  DE POTENCIA


El funcionamiento y utilización de los transistores de potencia es idéntico al de los transistores normales, teniendo como características especiales las altas tensiones e intensidades que tienen que soportar y, por tanto, las altas potencias a disipar.
Existen tres tipos de transistores de potencia:
 
 - bipolar.
- unipolar o FET (Transistor de Efecto de Campo).
- IGBT.
 
 
TRANSISTOR BIPOLAR DE POTENCIA:
 
Un transistor bipolar está formado por dos uniones pn en contraposición. Físicamente, el transistor está consitutído por tres regiones semiconductoras denominadas emisor, base y colector. Existen 2 tipos de transistores bipolares, los denominados NPN y PNP:


El emisor en un transistor NPN es la zona semiconductora más fuertemente dopada con donadores de electrones, siendo su ancho intermedio entre el de la base y el colector. Su función es la de emitir electrones a la base. La base es la zona más estrecha y se encuentra débilmente dopada con aceptores de electrones. El colector es la zona más ancha, y se encuentra dopado con donadores de electrones en cantidad intermedia entre el emisor y la base.


CONDICIONES DE FUNCIONAMIENTO:


Las condiciones normales de funcionamiento de un transistor NPN se dan cuando el diodo B-E se encuentra polarizado en directa y el diodo B-C se encuentra polarizado en inversa. En esta situación gran parte de los electrones que fluyen del emisor a la base consiguen atravesar ésta, debido a su poco grosor y débil dopado, y llegar al colector.
El transistor posee tres zonas de funcionamiento:




ZONA DE SATURACION:     
El diodo colector está polarizado directamente y es transistor se comporta como una pequeña resistencia. En esta zona un aumento adicionar de la corriente de base no provoca un aumento de la corriente de colector, ésta depende exclusivamente de la tensión entre emisor y colector. El transistor se asemeja en su circuito emisor-colector a un interruptor cer


ZONA ACTIVA:
 En este intervalo el transistor se comporta como una fuente de corriente , determinada por la corriente de base. A pequeños aumentos de la corriente de base corresponden grandes aumentos de la corriente de colector, de forma casi independiente de la tension entre emisor y colector. Para trabajar en esta zona el diodo B-E ha de estar polarizado en directa, mientra que el diodo B-C, ha de estar polarizado en inversa.


ZONA DE CORTE:
 El hecho de hacer nula la corriente de base, es equivalente a mantener el circuito base emisor abierto, en estas circunstancias la corriente de colector es prácticamente nula y por ello se puede considerar el transistor en su circuito C-E como un interruptor abierto.




CIRCUITO DE POLARIZACION DE EMISOR:




CIRCUITO DE POLARIZACION DE BASE:




TRANSISTOR UNIPOLAR O FET:


son un dispositivo unipolar, ya que la corriente existe tanto en forma de electrones como de huecos. En un FET de canal n, la corriente se debe a electrones,  mientras que en un FET de canal p, se debe a huecos. Ambos tipos de FET se controlan por una tensión entre la compuerta y la fuente.


 Los símbolos ilustrados se refieren al transistor de efecto de campo de juntura. Los TEC a y b han sido indicados como tipos N y P de acuerdo al empleo de los materiales tipo N y P en la fabricación de estos dispositivos.
 CARACTERISTICA:
Una característica importante de los FET es que se pueden comportar como si se
tratasen de resistencias o condensadores, lo que posibilita la realización de circuitos
utilizando única y exclusivamente transistores FET.




TRANSISTORES IGBT


Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.


CARACTERISTICAS:

-El IGBT es adecuado para velocidades de conmutación de hasta 20 kHz y ha sustituido al BJT en muchas aplicaciones. Es usado en aplicaciones de altas y medias energía como fuente conmutada, control de la tracción en motores y cocina de inducción. Grandes módulos de IGBT consisten en muchos dispositivos colocados en paralelo que pueden manejar altas corrientes del orden de cientos de amperios con voltajes de bloqueo de 6.000 voltios.

- Se puede concebir el IGBT como un transistor Darlington híbrido. Tiene la capacidad de manejo de corriente de un bipolar pero no requiere de la corriente de base para mantenerse en conducción. Sin embargo las corrientes transitorias de conmutacion de la base pueden ser igualmente altas. En aplicaciones de electrónica de potencia es intermedio entre los tiristores y los mosfet. Maneja más potencia que los segundos siendo más lento que ellos y lo inverso respecto a los primeros.

- Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15 V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.

FUNCIONAMIENTO DEL TRANSISTOR IGBT

Consideremos que el IBGT se encuentra bloqueado inicialmente. Esto significa que no existe ningún voltaje aplicado al gate. Si un voltaje VGS es aplicado al gate, el IGBT enciende inmediatamente, la corriente ID es conducida y el voltaje VDS se va desde el valor de bloqueo hasta cero. LA corriente ID persiste para el tiempo tON en el que la señal en el gate es aplicada. Para encender el IGBT, la terminal drain D debe ser polarizada positivamente con respecto a la terminal S. LA señal de encendido es un voltaje positivo VG que es aplicado al gate G. Este voltaje, si es aplicado como un pulso de magnitud aproximada de 15, puede causar que el tiempo de encendido sea menor a 1 s, después de lo cual la corriente de drain iD es igual a la corriente de carga IL (asumida como constante). Una vez encendido, el dispositivo se mantiene así por una señal de voltaje en el gate. Sin embargo, en virtud del control de voltaje la disipación de potencia en el gate es muy baja.




CIRCUITO EQUIVALENTE DE UN IGBT



SECCION DE UN IGBT


CURVA CARACTERISTICA DEL TRANSISTOR IGBT















No hay comentarios:

Publicar un comentario