viernes, 23 de marzo de 2012

RECTIFICADOR CONTROLADO DE SILICIO (SCR)


RECTIFICADOR CONTROLADO DE SILICIO:


Es un dispositivo semiconductor biestable formado por tres uniones pn con la disposición pnpn Está formado por tres terminales, llamados Ánodo, Cátodo y Puerta. La conducción entre ánodo y cátodo es controlada por el terminal de puerta. Es un elemento unidireccional (sentido de la corriente es único), conmutador casi ideal, rectificador y amplificador a la vez.

SIMBOLO DEL RECTIFICADOR CONTROLADO DE SICILICIO

CURVA CARACTERISTICA DEL SCR:

Podemos ver en la curva cuatro valores importantes. Dos de ellos provocarán la destrucción del SCR si se superan: VRB e IMAX. VRB (Reverse Breakdown Voltage) es, al igual que en el diodo Shockley, la tensión a partir de la cual se produce el fenómeno de avalancha. IMAX es la corriente máxima que puede soportar el SCR sin sufrir daño. Los otros dos valores importantes son la tensión de cebado VBO (Forward Breakover Voltage) y la corriente de mantenimiento IH, magnitudes análogas a las explicadas para el diodo Shockley.






AREA DE DISPARO SEGURO:
               
En esta  (Figura) se obtienen las condiciones de disparo del SCR. Las tensiones y  corrientes admisibles para el disparo se encuentran en el interior de la zona formada por las  curvas:
•Curva A y B: límite superior e inferior de la tensión puerta-cátodo en función de la corriente positiva de puerta, para una corriente nula de ánodo.
•Curva C: tensión directa de pico admisible VGF.
•Curva D: hipérbola de la potencia media máxima PGAV que no debemos sobrepasar.











CARACTERÍSTICAS ESTÁTICAS
Corresponden a la región ánodo- cátodo y son los valores máximos que colocan al elemento en un limite de sus posibilidades.

CARACTERÍSTICAS DINÁMICAS
Tensiones transitorias
Son valores de tensión que van superpuesto a la señal sinusoidal de la fuente de alimentación. Son de escasa duración, pero de amplitud considerable.






APLICACIONES DEL SCR :


Las aplicaciones de los tiristores se extienden desde la rectificación de corrientes alternas, en lugar de los diodos convencionales hasta la realización de determinadas conmutaciones de baja potencia en circuitos electrónicos, pasando por los onduladores o inversores que transforman la corriente continua en alterna.La principal ventaja que presentan frente a los diodos cuando se les utiliza como rectificadores es que su entrada en conducción estará controlada por la señal de puerta. De esta forma se podrá variar la tensión continua de salida si se hace variar el momento del disparo ya que se obtendrán diferentes ángulos de conducción del ciclo de la tensión o corriente alterna de entrada. Además el tiristor se bloqueará automáticamente al cambiar la alternancia de positiva a negativa ya que en este momento empezará a recibir tensión inversa. Por lo anteriormente señalado el SCR tiene una gran variedad de aplicaciones, entre ellas están las siguientes:
· Controles de relevador.
· Circuitos de retardo de tiempo.
· Fuentes de alimentación reguladas.
· Interruptores estáticos.
· Controles de motores.
· Recortadores.
· Inversores.
· Ciclo conversores.
· Cargadores de baterías.
· Circuitos de protección.
· Controles de calefacción.
· Controles de fase.


EFECTOS DEL SCR CON CARGAS INDUCTIVAS:

Cuando la carga del SCR es una carga inductiva, (se comporta como un inductor), es importante tomar en cuenta el tiempo que tarda la corriente en aumentar en una bobina.
El pulso que se aplica a la compuerta debe ser lo suficientemente duradero para que la corriente de la carga iguale a la corriente de enganche y así el tiristor se mantenga en conducción. En este tipo de cargas, la corriente puede, en principio, cambiar tan súbitamente como lo haga la tensión. Pero si el circuito es inductivo, como es el caso de los Motores eléctricos, entonces la corriente no puede sufrir cambios bruscos, pudiendo llegar a Tener un retraso considerable respecto a la tensión.
Si la inductancia es alta pueden aparecer dos problemas:


1). Puede ocurrir que el tiristor no llegue ni siquiera a encenderse, si resultara que al crecer muy lentamente la corriente en el momento de la activación de la compuerta, al cesar el pulso de activación, la corriente aún no hubiera ni siquiera alcanzado el mínimo IH necesario para mantener encendido al tiristor. La solución a este problema consiste en hacer que los pulsos de encendido sean más largos.
2). Si el retraso de la corriente es muy grande, puede que cuando ésta llegue a ser inferior a la corriente de mantenimiento IH, la tensión sea ya tan grande que el tiristor siga encendido, con lo cual, no se apaga nunca. Para evitar este problema se monta en paralelo con la carga un diodo para derivar por él el exceso de corriente que hace que el tiristor no se cierre a su tiempo.




VENTAJAS DEL SCR:
  • Requiere poca corriente de gate para disparar una gran corriente directa
  • Puede bloquear ambas polaridades de una señal de A.C.
  • Bloquea altas tensiones y tiene caídas en directa pequeñas
DESVANTAJAS DEL SCR:
  • El dispositivo no se apaga con Ig=0
  • No pueden operar a altas frecuencias
  • Pueden dispararse por ruidos de tensión
  • Tienen un rango limitado de operación con respecto a la temperatura





EL TRIAC

EL TRIAC:
es un dispositivo semiconductor de tres terminales que se usa para controlar el flujo de corriente promedio a una carga, con la particularidad de que conduce en ambos sentidos y puede ser bloqueado por inversión de la tensión o al disminuir la corriente por debajo del valor de mantenimiento. El triac puede ser disparado independientemente de la polarización de puerta, es decir, mediante una corriente de puerta positiva o negativa.






SIMBOLO DEL TRIAC


DISPARO POR CORRIENTE CONTINUA.
En este caso la tensión de disparo proviene de una fuente de tensión continua aplicada al TRIAC a través de una resistencia limitadora de la corriente de puerta. Es necesario disponer de un elemento interruptor en serie con la corriente de disparo encargado de la función de control, que puede ser un simple interruptor mecánico o un transistor trabajando en conmutación.
 Este sistema de disparo es el normalmente empleado en los circuitos electrónicos alimentados por tensiones continuas cuya función sea la de control de una corriente a partir de una determinada señal de excitación, que generalmente se origina en un transductor de cualquier tipo.


DISPARO POR CORRIENTE  ALTERNA.
El disparo por corriente alterna se puede realizar mediante el empleo de un transformador que suministre la tensión de disparo, o bien directamente a partir de la propia tensión de la red con una resistencia limitadora de la corriente de puerta adecuada y algún elemento interruptor que entregue la excitación a la puerta en el momento preciso.


La relación en el circuito entre la fuente de voltaje, el triac y la carga se representa en la FIG.7. La corriente promedio entregada a la carga puede variarse alterando la cantidad de tiempo por ciclo que el triac permanece en el estado encendido. Si permanece una parte pequeña del tiempo en el estado encendido, el flujo de corriente promedio a través de muchos ciclos será pequeño, en cambio si permanece durante una parte grande del ciclo de tiempo encendido, la corriente promedio será alta.



EN LA FIGURA (A)
las formas de onda muestran apagado el triac durante los primeros 30 de cada semiciclo, durante estos 30 el triac se comporta como un interruptor abierto, durante este tiempo el voltaje completo de línea se cae a través de las terminales principales del triac, sin aplicar ningún voltaje a la carga. Por tanto no hay flujo de corriente a través del triac y la carga.
La parte del semiciclo durante la cual existe seta situación se llama ángulo de retardo de disparo.
Después de transcurrido los 30 , el triac dispara y se vuelve como un interruptor cerrado y comienza a conducir corriente a la carga, esto lo realiza durante el resto del semiciclo. La parte del semiciclo durante la cual el triac esta encendido se llama ángulo de conducción
.
EN LA FIGURA (B)
 muestran las mismas formas de ondas pero con ángulo de retardo de disparo mayor.










CARACTERISTICAS Y APLICACIONES DE LOS  TRIACS:

- El TRIAC conmuta del modo de corte al modo de conducción cuando se inyecta corriente a la compuerta. Después del disparo la compuerta no posee control sobre el estado del TRIAC. Para apagar el TRIAC la corriente anódica debe reducirse por debajo del valor de la corriente de retención Ih.

- La corriente y la tensión de encendido disminuyen con el aumento de temperatura y con el aumento de la tensión de bloqueo.

- La aplicación de los TRIACS, a diferencia de los Tiristores, se encuentra  básicamente en corriente alterna. Su curva característica refleja un funcionamiento muy parecido al del tiristor apareciendo en el primer y tercer cuadrante del sistema de ejes. Esto es debido a su bidireccionalidad.

- La principal utilidad de los TRIACS es como regulador de potencia entregada a una carga, en corriente alterna. 

TIRISTOR GTO

TIRISTOR GTO:


es un dispositivo de electrónica de potencia que puede ser encendido por un solo pulso de corriente positiva en la terminal puerta o gate (G), al igual que el tiristor normal; pero en cambio puede ser apagado al aplicar un pulso de corriente negativa en el mismo terminal. Ambos estados, tanto el estado de encendido como el estado de apagado, son controlados por la corriente en la puerta (G).











CARACTERISTICAS:


El disparo se realiza mediante una VGK >0

El bloqueo se realiza con una VGK < 0.

La ventaja del bloqueo por puerta es que no se precisan de los circuitos de bloqueo forzado que requieren los SCR.

La desventaja es que la corriente de puerta tiene que ser mucho mayor por lo que el generador debe estar mas dimensionado.

El GTO con respecto al SCR disipa menos potencia.





FUNCIONAMIENTO

Un tiristor GTO, al igual que un SCR puede activarse mediante la aplicación de una señal positiva de compuerta. Sin embargo, se puede desactivar mediante una señal negativa de compuerta. Un GTO es un dispositivo de enganche y se construir con especificaciones de corriente y voltajes similares a las de un SCR. Un GTO se activa aplicando a su compuerta un pulso positivo corto y se desactiva mediante un pulso negativo corto.






INTENSIDAD DE PUERTA EN EL ENCENDIDO DE UN GTO

















ENCENDIDO DE UN  GTO
Al igual que ocurre con un tiristor convencional, para llevar a cabo el encendido de un GTO es necesario aplicar una determinada corriente entrante por la puerta. Sin embargo, en el encendido de un GTO la corriente máxima por la puerta IGM y la velocidad de variación de dicha corriente al principio de la conducción deben ser lo suficientemente grandes como para asegurar que la corriente circula por todas las islas cátodo (figura 6.4. Si esto no fuese así y sólo algunas islas cátodo condujeran, la densidad de corriente en estas islas sería tan elevada que el excesivo calentamiento en zonas localizadas podría provocar la destrucción del dispositivo.
APAGADO



Al comenzar a circular corriente positiva por la puerta, la corriente de ánodo a cátodo se concentra en las zonas situadas entre los terminales de puerta, aumentando la densidad de corriente en estas zonas.
De esta forma, el GTO no comienza a apagarse hasta que la corriente de ánodo a cátodo ha quedado reducida a pequeños filamentos entre los terminales de puerta. Entonces la tensión vAK, hasta entonces muy pequeña al estar el GTO en funcionamiento, comienza a aumentar. Como la gran densidad de corriente que circula por estos pequeños filamentos podría ocasionar su destrucción, se utiliza un condensador snubber en paralelo con el GTO, que ofrece a la corriente un camino alternativo por donde circular. Así, cuando vAK comienza a aumentar el condensador comienza a cargarse, por lo que parte de la corriente que circulaba por el GTO lo hace ahora por el condensador.

TRANSISTOR MOSFET

MOSFET:


 significa "FET de Metal Oxido Semiconductor" o FET de compuerta aislada, es un arreglo de cientos de transistores integrados en un sustrato de silicio. Cada uno entrega una parte a la corriente total.
Uno de los motivos que impulsó su desarrollo es que los transistores bipolares presentan limitaciones. Es un dispositivo controlado por tensión, Es un dispositivo extremadamente veloz en virtud a la pequeña corriente necesaria para estrangular o liberar el canal. Por esta facultad se los usa ampliamente en conmutación. Su velocidad permite diseñar etapas con grandes anchos de banda minimizando, así, lo que se denomina distorsión por fase.



FUNCIONAMIENTO:


Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:
  • Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
  • Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.
Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).
El transistor MOSFET tiene tres estados de funcionamiento


APLICACIONES:




El MOSFET es frecuentemente usado como amplificador de potencia ya que ofrecen dos ventajas sobre los MESFET’s y los JFET’s y ellas son:

En la región activa de un MOSFET en modo de enriquecimiento, la capacitancia de entrada y la trasconductancia es casi independiente del voltaje de la compuerta y la capacitancia de salida es independiente del voltaje del drenador. Este puede proveer una potencia de amplificación muy lineal.
El rango de voltaje activo de la compuerta puede ser mayor porque los MOSFET’s de canal n en modo de vaciamiento pueden operar desde la región de modo de vaciamiento (-Vg) a la región de modo de enriquecimiento (+Vg).





ESTEDO DE CORTE


Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador. También se llama mosfet a los aislados por juntura de dos componentes

CONDUCCION LINEAL


Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.

SATURACION:

Cuando la tensión entre drenador y fuente supera cierto límite, el canal de conducción bajo la puerta sufre un estrangulamiento en las cercanías del drenador y desaparece. La corriente entre fuente y drenador no se interrumpe, ya que es debido al campo eléctrico entre ambos, pero se hace independiente de la diferencia de potencial entre ambos terminales.




TRANSISTORES  MOSFET DEL CANAL N:


(a) símbolo,
(b) curva v-i característica,
(c) curva ideal












Curva caracteristica y de salida de un transistor mosfet de acumlacion canal n.





Curva caracteristica y de salida de un transistor mosfet de deplexion canal n.

TRANSISTORES DE POTENCIA

EL TRANSISTOR  DE POTENCIA


El funcionamiento y utilización de los transistores de potencia es idéntico al de los transistores normales, teniendo como características especiales las altas tensiones e intensidades que tienen que soportar y, por tanto, las altas potencias a disipar.
Existen tres tipos de transistores de potencia:
 
 - bipolar.
- unipolar o FET (Transistor de Efecto de Campo).
- IGBT.
 
 
TRANSISTOR BIPOLAR DE POTENCIA:
 
Un transistor bipolar está formado por dos uniones pn en contraposición. Físicamente, el transistor está consitutído por tres regiones semiconductoras denominadas emisor, base y colector. Existen 2 tipos de transistores bipolares, los denominados NPN y PNP:


El emisor en un transistor NPN es la zona semiconductora más fuertemente dopada con donadores de electrones, siendo su ancho intermedio entre el de la base y el colector. Su función es la de emitir electrones a la base. La base es la zona más estrecha y se encuentra débilmente dopada con aceptores de electrones. El colector es la zona más ancha, y se encuentra dopado con donadores de electrones en cantidad intermedia entre el emisor y la base.


CONDICIONES DE FUNCIONAMIENTO:


Las condiciones normales de funcionamiento de un transistor NPN se dan cuando el diodo B-E se encuentra polarizado en directa y el diodo B-C se encuentra polarizado en inversa. En esta situación gran parte de los electrones que fluyen del emisor a la base consiguen atravesar ésta, debido a su poco grosor y débil dopado, y llegar al colector.
El transistor posee tres zonas de funcionamiento:




ZONA DE SATURACION:     
El diodo colector está polarizado directamente y es transistor se comporta como una pequeña resistencia. En esta zona un aumento adicionar de la corriente de base no provoca un aumento de la corriente de colector, ésta depende exclusivamente de la tensión entre emisor y colector. El transistor se asemeja en su circuito emisor-colector a un interruptor cer


ZONA ACTIVA:
 En este intervalo el transistor se comporta como una fuente de corriente , determinada por la corriente de base. A pequeños aumentos de la corriente de base corresponden grandes aumentos de la corriente de colector, de forma casi independiente de la tension entre emisor y colector. Para trabajar en esta zona el diodo B-E ha de estar polarizado en directa, mientra que el diodo B-C, ha de estar polarizado en inversa.


ZONA DE CORTE:
 El hecho de hacer nula la corriente de base, es equivalente a mantener el circuito base emisor abierto, en estas circunstancias la corriente de colector es prácticamente nula y por ello se puede considerar el transistor en su circuito C-E como un interruptor abierto.




CIRCUITO DE POLARIZACION DE EMISOR:




CIRCUITO DE POLARIZACION DE BASE:




TRANSISTOR UNIPOLAR O FET:


son un dispositivo unipolar, ya que la corriente existe tanto en forma de electrones como de huecos. En un FET de canal n, la corriente se debe a electrones,  mientras que en un FET de canal p, se debe a huecos. Ambos tipos de FET se controlan por una tensión entre la compuerta y la fuente.


 Los símbolos ilustrados se refieren al transistor de efecto de campo de juntura. Los TEC a y b han sido indicados como tipos N y P de acuerdo al empleo de los materiales tipo N y P en la fabricación de estos dispositivos.
 CARACTERISTICA:
Una característica importante de los FET es que se pueden comportar como si se
tratasen de resistencias o condensadores, lo que posibilita la realización de circuitos
utilizando única y exclusivamente transistores FET.




TRANSISTORES IGBT


Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.


CARACTERISTICAS:

-El IGBT es adecuado para velocidades de conmutación de hasta 20 kHz y ha sustituido al BJT en muchas aplicaciones. Es usado en aplicaciones de altas y medias energía como fuente conmutada, control de la tracción en motores y cocina de inducción. Grandes módulos de IGBT consisten en muchos dispositivos colocados en paralelo que pueden manejar altas corrientes del orden de cientos de amperios con voltajes de bloqueo de 6.000 voltios.

- Se puede concebir el IGBT como un transistor Darlington híbrido. Tiene la capacidad de manejo de corriente de un bipolar pero no requiere de la corriente de base para mantenerse en conducción. Sin embargo las corrientes transitorias de conmutacion de la base pueden ser igualmente altas. En aplicaciones de electrónica de potencia es intermedio entre los tiristores y los mosfet. Maneja más potencia que los segundos siendo más lento que ellos y lo inverso respecto a los primeros.

- Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15 V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.

FUNCIONAMIENTO DEL TRANSISTOR IGBT

Consideremos que el IBGT se encuentra bloqueado inicialmente. Esto significa que no existe ningún voltaje aplicado al gate. Si un voltaje VGS es aplicado al gate, el IGBT enciende inmediatamente, la corriente ID es conducida y el voltaje VDS se va desde el valor de bloqueo hasta cero. LA corriente ID persiste para el tiempo tON en el que la señal en el gate es aplicada. Para encender el IGBT, la terminal drain D debe ser polarizada positivamente con respecto a la terminal S. LA señal de encendido es un voltaje positivo VG que es aplicado al gate G. Este voltaje, si es aplicado como un pulso de magnitud aproximada de 15, puede causar que el tiempo de encendido sea menor a 1 s, después de lo cual la corriente de drain iD es igual a la corriente de carga IL (asumida como constante). Una vez encendido, el dispositivo se mantiene así por una señal de voltaje en el gate. Sin embargo, en virtud del control de voltaje la disipación de potencia en el gate es muy baja.




CIRCUITO EQUIVALENTE DE UN IGBT



SECCION DE UN IGBT


CURVA CARACTERISTICA DEL TRANSISTOR IGBT